### organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

### Ethyl 4-cyano-7-nitro-1,2,3,3a,4,5hexahydropyrrolo[1,2-a]quinoline-4carboxylate

#### Yvon Bibila Mayaya Bisseyou,<sup>a</sup>\* Adéyolé Timotou,<sup>b</sup> Ajouby Adjou,<sup>b</sup> Rita Kakou-Yao<sup>a</sup> and Jules Tenon Abodou<sup>a</sup>

<sup>a</sup>Laboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Cote d'Ivoire, and <sup>b</sup>Laboratoire de Chimie Organique Structurale, UFR SSMT, Université de Cocody, 22 BP 582 Abidjan 22, Cote d'Ivoire

Correspondence e-mail: bibilamayayabisseyou@yahoo.fr

Received 24 January 2012; accepted 26 January 2012

Key indicators: single-crystal X-ray study; T = 223 K; mean  $\sigma$ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.083; wR factor = 0.247; data-to-parameter ratio = 18 1

In the title compound, C<sub>16</sub>H<sub>17</sub>N<sub>3</sub>O<sub>4</sub>, the six-membered Ncontaining ring adopts a half-chair conformation. One C atom of the five-membered ring is disordered over two sites, with occupancy factors of ca 0.67 and 0.33. The major pyrroline component adopts a half-chair conformation. Intermolecular C-H···O hydrogen bonds forming centrosymmetric dimers are observed in the crystal.

#### **Related literature**

For the biological activity of tricyclic quinoline derivatives, see: Dalla Via et al. (2008); Gasparotto et al. (2006); Ferlin et al. (2000). For the crystal structure of an intermediate compound, see: Yapo, Konan et al. (2010). For a closely related crystal structure, see: Yapo, Abou et al. (2010). For ring conformation analysis, see: Cremer & Pople (1975). For graphset notation, see: Bernstein et al. (1995).



#### **Experimental**

#### Crystal data

9

D-

C1

| C <sub>16</sub> H <sub>17</sub> N <sub>3</sub> O <sub>4</sub> | $\gamma = 80.429 \ (2)^{\circ}$           |
|---------------------------------------------------------------|-------------------------------------------|
| $M_r = 315.33$                                                | V = 754.79 (5) Å <sup>3</sup>             |
| Triclinic, P1                                                 | Z = 2                                     |
| a = 7.2292 (2) Å                                              | Mo $K\alpha$ radiation                    |
| b = 9.1589 (3) Å                                              | $\mu = 0.10 \text{ mm}^{-1}$              |
| c = 11.8243 (5) Å                                             | T = 223  K                                |
| $\alpha = 79.332 \ (1)^{\circ}$                               | $0.25 \times 0.20 \times 0.15 \text{ mm}$ |
| $\beta = 82.609 \ (1)^{\circ}$                                |                                           |
|                                                               |                                           |

#### Data collection

| onius KappaCCD area-detector | 3879 independent reflections           |
|------------------------------|----------------------------------------|
| diffractometer               | 2498 reflections with $I > 2\sigma(I)$ |
| 677 measured reflections     | $R_{\rm int} = 0.049$                  |
|                              |                                        |

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.083$ | 12 restraints                                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.247$               | H-atom parameters constrained                              |
| S = 1.17                        | $\Delta \rho_{\rm max} = 0.75 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3879 reflections                | $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$ |
| 214 parameters                  |                                                            |

#### Table 1 Hydrogen-bond geometry (Å, °).

| $-H\cdots A$             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------|------|-------------------------|--------------|--------------------------------------|
| $1 - H11A \cdots O3^{i}$ | 0.97 | 2.48                    | 3.432 (3)    | 167                                  |
| 1 (1)                    |      |                         |              |                                      |

Symmetry code: (i) -x, -y + 2, -z + 1.

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank Michel Giorgi and the Spectropole Service, Faculty of Sciences and Techniques, Saint Jérome University, France, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2466).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dalla Via, L., Gia, O., Gasparotto, V. & Ferlin, M. G. (2008). J. Med. Chem. 43, 429-434.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ferlin, M. G., Gatto, B., Chiarelotto, G. & Palumbo, M. (2000). Bioorg. Med. Chem. 8, 1415-1422.
- Gasparotto, V., Castalinolo, I., Chiarelotto, G., Pezzi, V., Montanaro, D., Brun, P., Palu, G., Viola, G. & Ferlin, M. G. (2006). J. Med. Chem. 49, 1910-1915. Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

- Yapo, Y. M., Abou, B. C., Adjou, A., Kakou-Yao, R. & Tenon, J. A. (2010). *Acta Cryst.* E66, 02497.
- Yapo, Y. M., Konan, K. M., Adjou, A., Timotou, A. & Tenon, J. A. (2010). Acta Cryst. E66, 01735.

Acta Cryst. (2012). E68, o550-o551 [doi:10.1107/S1600536812003480]

#### Ethyl 4-cyano-7-nitro-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4-carboxylate

#### Y. Bibila Mayaya Bisseyou, A. Timotou, A. Adjou, R. Kakou-Yao and J. Tenon Abodou

#### Comment

The title compound is a tricyclic quinoline derivative obtained from an intermediate compound, (*E*)-ethyl 2-cyano-3-[5-nitro-2-(pyrrolidin-1-yl)phenyl]acrylate, whose molecular and crystal structures were recently determined by X-ray diffraction (Yapo, Konan *et al.*, 2010). Tricyclic quinoline derivatives have received considerable attention because of their important therapeutic properties (Dalla Via *et al.*, 2008; Gasparotto *et al.*, 2006; Ferlin *et al.*, 2000).

In this paper the crystal structure of the title compound is reported from single-crystal X-ray diffraction data collected at 223 K. The molecular structure of the title compound is shown in Fig. 1. The structure is composed of two principal parts: the quinoline ring system and the pyrroline ring.

The quinoline ring system has geometrical parameters which are consistent with those reported recently (Yapo, Abou *et al.*, 2010). The six-membered N-containing ring adopts a half-chair conformation, with puckering parameters Q = 0.512 (2)Å,  $\theta = 129.6$  (2)°,  $\varphi = 283.6$  (3)° (Cremer & Pople, 1975). The pyrroline ring exhibits disorder of atom C2 over two sites, with occupancy factors of 0.672 (5) and 0.328 (5). The major component of the five-membered ring adopts a half-chair conformation with puckering parameters Q(2) = 0.335 (3) Å and  $\varphi = 54.5$  (5)°.

In the crystal structure, molecules form centrosymmetric dimeric units *via* C—H···O hydrogen bonds, characterized by an  $R^2_2(10)$  (Bernstein *et al.*, 1995) motif (Fig. 2). These centrosymmetric  $R^2_2(10)$  dimers are arranged in the crystal structure as shown in Fig. 3.

#### **Experimental**

(*E*)-Ethyl-2-cyano-3-(5-nitro-2-pyrrolidin-1-yl)phenyl) acrylate (2 g, 6.34 mmol) was dissolved in anhydrous dimethylformamide (10 ml). The mixture was heated to reflux over a period of 24 h. After cooling to ambient temperature, the reaction mixture was poured into water (20 ml). After extraction by ethyl acetate (2x50ml), the organic layers were dried over magnesium sulfate, filtered and concentrated under reduced pressure. The residue was purified by chromatography on silica gel. Elution solvent: hexane/ethyl acetate (90/10). Yellow single crystals of the title compound were obtained with a yield of 48% (m.p.: 397–398 K; Rf: 0.65, hexane/ethyl acetate: 90/10).

#### Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with  $Csp^2$ —H = 0.93 Å, C(methine)—H = 0.98 Å, C(methylene)—H = 0.97 Å, C(methyl)—H = 0.96 Å;  $U_{iso}(H) = xU_{eq}(C)$ , where x = 1.5 for methyl H and 1.2 for all other H atoms.

**Figures** 



Fig. 1. *ORTEP* view of the molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. C2A and C2B are the major and minor components, respectively, of the disordered atom.

Fig. 2. Part of the crystal packing showing a centrosymmetric  $R^2_2(10)$  dimer unit. For the sake of clarity, the unit-cell outline and H atoms not involved in hydrogen bonds have been omitted. Dashed lines indicate hydrogen bonds. Atom O3a belongs to the molecule at symmetry position (-*x*+2,-*y*,-*z*+1).

Fig. 3. Packing diagram of the title compound, viewed down the *a* axis. H atoms not involved in hydrogen bonds have been omitted for clarity. Dashed lines indicate hydrogen bonds.

#### Ethyl 4-cyano-7-nitro-1,2,3,3a,4,5-hexahydropyrrolo[1,2-a]quinoline-4- carboxylate

Crystal data

| $C_{16}H_{17}N_{3}O_{4}$        | Z = 2                                                 |
|---------------------------------|-------------------------------------------------------|
| $M_r = 315.33$                  | F(000) = 332                                          |
| Triclinic, $P\overline{1}$      | $D_{\rm x} = 1.387 {\rm ~Mg~m}^{-3}$                  |
| a = 7.2292 (2) Å                | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| b = 9.1589 (3) Å                | Cell parameters from 9677 reflections                 |
| c = 11.8243 (5) Å               | $\theta = 1.8 - 29.2^{\circ}$                         |
| $\alpha = 79.332 (1)^{\circ}$   | $\mu = 0.10 \text{ mm}^{-1}$                          |
| $\beta = 82.609 \ (1)^{\circ}$  | T = 223  K                                            |
| $\gamma = 80.429 \ (2)^{\circ}$ | Prism, yellow                                         |
| $V = 754.79 (5) \text{ Å}^3$    | $0.25 \times 0.20 \times 0.15 \text{ mm}$             |

#### Data collection

| Nonius KappaCCD area-detector<br>diffractometer | 2498 reflections with $I > 2\sigma(I)$                                    |
|-------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube        | $R_{\rm int} = 0.049$                                                     |
| graphite                                        | $\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| $\varphi$ and $\omega$ scans                    | $h = 0 \rightarrow 9$                                                     |

| 9677 measured reflections    | $k = -11 \rightarrow 12$ |
|------------------------------|--------------------------|
| 3879 independent reflections | $l = -15 \rightarrow 16$ |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                                                                                            |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: inferred from neighbouring sites                                                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.083$ | H-atom parameters constrained                                                                                                                   |
| $wR(F^2) = 0.247$               | $w = 1/[\sigma^2(F_0^2) + (0.1394P)^2 + 0.0744P]$<br>where $P = (F_0^2 + 2F_c^2)/3$                                                             |
| <i>S</i> = 1.17                 | $(\Delta/\sigma)_{\rm max} < 0.001$                                                                                                             |
| 3879 reflections                | $\Delta \rho_{max} = 0.75 \text{ e } \text{\AA}^{-3}$                                                                                           |
| 214 parameters                  | $\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$                                                                                      |
| 12 restraints                   | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(20)] <sup>-1/4</sup> |
|                                 |                                                                                                                                                 |

Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.38 (4)

#### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У            | Ζ            | $U_{\rm iso}^*/U_{\rm eq}$ | Occ. (<1) |
|------|-------------|--------------|--------------|----------------------------|-----------|
| N1   | 0.2977 (3)  | 0.58327 (19) | 0.70594 (15) | 0.0351 (5)                 |           |
| C1   | 0.2805 (3)  | 0.4588 (3)   | 0.80197 (18) | 0.0412 (6)                 |           |
| H1A  | 0.3981      | 0.3908       | 0.8092       | 0.049*                     |           |
| H1B  | 0.1808      | 0.4032       | 0.7947       | 0.049*                     |           |
| C2A  | 0.2298 (6)  | 0.5486 (4)   | 0.9047 (3)   | 0.0419 (8)                 | 0.672 (5) |
| H2A1 | 0.0953      | 0.5827       | 0.9146       | 0.050*                     | 0.672 (5) |
| H2A2 | 0.2676      | 0.4865       | 0.9761       | 0.050*                     | 0.672 (5) |
| C2B  | 0.3452 (12) | 0.5011 (9)   | 0.9026 (6)   | 0.0419 (8)                 | 0.328 (5) |
| H2B1 | 0.4735      | 0.4537       | 0.9134       | 0.050*                     | 0.328 (5) |
| H2B2 | 0.2642      | 0.4719       | 0.9724       | 0.050*                     | 0.328 (5) |
| C5   | 0.2756 (3)  | 0.5797 (2)   | 0.59352 (17) | 0.0308 (5)                 |           |
| C8   | 0.2277 (3)  | 0.5789 (3)   | 0.36579 (18) | 0.0367 (5)                 |           |
| O3   | -0.0755 (2) | 0.8596 (2)   | 0.64410 (15) | 0.0488 (5)                 |           |
| C7   | 0.2484 (3)  | 0.7115 (3)   | 0.39876 (18) | 0.0365 (5)                 |           |

| H7   | 0.2451      | 0.7994     | 0.3446       | 0.044*     |
|------|-------------|------------|--------------|------------|
| C10  | 0.2506 (3)  | 0.4473 (2) | 0.55766 (19) | 0.0352 (5) |
| H10  | 0.2504      | 0.3591     | 0.6112       | 0.042*     |
| C4   | 0.3558 (3)  | 0.7113 (2) | 0.74133 (18) | 0.0348 (5) |
| H4   | 0.4904      | 0.7105     | 0.7159       | 0.042*     |
| C11  | 0.2999 (3)  | 0.8593 (2) | 0.54725 (18) | 0.0369 (5) |
| H11A | 0.2216      | 0.9420     | 0.5043       | 0.044*     |
| H11B | 0.4302      | 0.8752     | 0.5273       | 0.044*     |
| O4   | -0.0134 (2) | 0.8945 (2) | 0.81674 (14) | 0.0480 (5) |
| 01   | 0.1913 (3)  | 0.4596 (2) | 0.21612 (16) | 0.0595 (6) |
| C6   | 0.2741 (3)  | 0.7141 (2) | 0.51212 (17) | 0.0326 (5) |
| N2   | 0.2021 (3)  | 0.5793 (3) | 0.24618 (17) | 0.0465 (5) |
| O2   | 0.1926 (4)  | 0.6986 (2) | 0.17861 (16) | 0.0722 (7) |
| C12  | 0.2475 (3)  | 0.8588 (2) | 0.67809 (17) | 0.0332 (5) |
| C9   | 0.2265 (3)  | 0.4462 (3) | 0.4446 (2)   | 0.0375 (5) |
| Н9   | 0.2097      | 0.3582     | 0.4212       | 0.045*     |
| C14  | 0.0328 (3)  | 0.8707 (2) | 0.70870 (18) | 0.0344 (5) |
| N3   | 0.3742 (3)  | 1.0864 (2) | 0.72921 (19) | 0.0522 (6) |
| C13  | 0.3147 (3)  | 0.9878 (3) | 0.70977 (19) | 0.0389 (5) |
| C3   | 0.3340 (4)  | 0.6763 (3) | 0.8734 (2)   | 0.0485 (6) |
| H3A  | 0.4566      | 0.6512     | 0.9028       | 0.058*     |
| H3B  | 0.2651      | 0.7623     | 0.9053       | 0.058*     |
| C15  | -0.2116 (4) | 0.8961 (3) | 0.8615 (2)   | 0.0541 (7) |
| H15A | -0.2559     | 0.8064     | 0.8495       | 0.065*     |
| H15B | -0.2880     | 0.9831     | 0.8219       | 0.065*     |
| C16  | -0.2252 (5) | 0.9021 (4) | 0.9866 (3)   | 0.0725 (9) |
| H16A | -0.1379     | 0.8220     | 1.0232       | 0.109*     |
| H16B | -0.3511     | 0.8914     | 1.0207       | 0.109*     |
| H16C | -0.1953     | 0.9968     | 0.9969       | 0.109*     |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$    | U <sup>22</sup> | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$    |
|-----|-------------|-----------------|-----------------|--------------|--------------|-------------|
| N1  | 0.0446 (11) | 0.0312 (9)      | 0.0282 (9)      | -0.0060 (7)  | -0.0043 (7)  | -0.0011 (7) |
| C1  | 0.0448 (13) | 0.0414 (12)     | 0.0345 (12)     | -0.0088 (10) | -0.0089 (9)  | 0.0067 (9)  |
| C2A | 0.0446 (19) | 0.0502 (19)     | 0.0286 (14)     | -0.0076 (16) | -0.0043 (15) | 0.0000 (13) |
| C2B | 0.0446 (19) | 0.0502 (19)     | 0.0286 (14)     | -0.0076 (16) | -0.0043 (15) | 0.0000 (13) |
| C5  | 0.0278 (10) | 0.0339 (10)     | 0.0285 (10)     | -0.0011 (8)  | -0.0013 (8)  | -0.0037 (8) |
| C8  | 0.0303 (11) | 0.0500 (13)     | 0.0301 (11)     | -0.0029 (9)  | -0.0021 (8)  | -0.0110 (9) |
| O3  | 0.0427 (10) | 0.0580 (11)     | 0.0475 (10)     | -0.0053 (8)  | -0.0129 (8)  | -0.0095 (8) |
| C7  | 0.0353 (11) | 0.0414 (11)     | 0.0299 (11)     | -0.0042 (9)  | -0.0003 (8)  | -0.0014 (8) |
| C10 | 0.0342 (11) | 0.0329 (10)     | 0.0366 (11)     | -0.0028 (8)  | -0.0001 (9)  | -0.0054 (8) |
| C4  | 0.0345 (11) | 0.0350 (11)     | 0.0345 (11)     | -0.0019 (8)  | -0.0063 (8)  | -0.0058 (8) |
| C11 | 0.0454 (12) | 0.0344 (11)     | 0.0299 (11)     | -0.0104 (9)  | -0.0007 (9)  | -0.0006 (8) |
| O4  | 0.0382 (9)  | 0.0667 (11)     | 0.0412 (9)      | -0.0079 (8)  | -0.0005 (7)  | -0.0168 (8) |
| 01  | 0.0681 (13) | 0.0687 (13)     | 0.0492 (11)     | -0.0066 (10) | -0.0115 (9)  | -0.0284 (9) |
| C6  | 0.0319 (10) | 0.0356 (11)     | 0.0294 (10)     | -0.0054 (8)  | -0.0015 (8)  | -0.0041 (8) |
| N2  | 0.0432 (11) | 0.0633 (14)     | 0.0342 (10)     | -0.0040 (10) | -0.0055 (8)  | -0.0141 (9) |

| 02               | 0.1117 (19)     | 0.0696 (13) | 0.0376 (11) | -0.0166 (12) | -0.0238 (11) | -0.0003 (9)  |
|------------------|-----------------|-------------|-------------|--------------|--------------|--------------|
| C12              | 0.0382 (11)     | 0.0316 (10) | 0.0304 (10) | -0.0066 (8)  | -0.0027 (8)  | -0.0059 (8)  |
| С9               | 0.0331 (11)     | 0.0392 (11) | 0.0420 (12) | -0.0027 (9)  | -0.0024 (9)  | -0.0150 (9)  |
| C14              | 0.0383 (11)     | 0.0293 (10) | 0.0346 (11) | -0.0034 (8)  | -0.0051 (9)  | -0.0033 (8)  |
| N3               | 0.0609 (14)     | 0.0443 (12) | 0.0561 (14) | -0.0191 (10) | -0.0045 (10) | -0.0106 (10) |
| C13              | 0.0408 (12)     | 0.0392 (12) | 0.0365 (12) | -0.0057 (9)  | -0.0052 (9)  | -0.0049 (9)  |
| C3               | 0.0611 (16)     | 0.0466 (13) | 0.0353 (12) | 0.0052 (11)  | -0.0143 (11) | -0.0053 (10) |
| C15              | 0.0392 (14)     | 0.0663 (17) | 0.0566 (16) | -0.0072 (12) | 0.0027 (11)  | -0.0148 (13) |
| C16              | 0.0599 (19)     | 0.098 (2)   | 0.0578 (18) | -0.0145 (17) | 0.0146 (14)  | -0.0208 (17) |
| Geometric pa     | rameters (Å, °) |             |             |              |              |              |
| N1               |                 | 1 366 (3)   | C4—         | C3           | 1.52         | 8 (3)        |
| N1-C4            |                 | 1 455 (3)   | C4—         | C12          | 1.55         | 6(3)         |
| NI-CI            |                 | 1.461 (3)   | C4          | H4           | 0.98         | 00           |
| C1-C2B           |                 | 1.470(7)    | C11-        |              | 1 51         | 0(3)         |
| C1 - C2A         |                 | 1.562 (4)   | C11-        | -C12         | 1.54         | 4 (3)        |
| C1—H1A           |                 | 0.9700      | C11-        | -H11A        | 0.97         | 00           |
| C1—H1B           |                 | 0.9700      | C11-        | -H11R        | 0.97         | 00           |
| $C^{2}$          |                 | 1 461 (4)   | 04-         | C14          | 1.32         | 7 (3)        |
| $C_{2A}$ H2A1    |                 | 0.9700      | 04—         | C15          | 1.52         | (1)          |
| $C_{2A}$ H2A2    |                 | 0.9700      | 01-         | N2           | 1.10         | 1 (3)        |
| C2B-C3           |                 | 1 568 (8)   | N2—         | 02           | 1.23         | 6(3)         |
| C2B—H2B1         |                 | 0.9700      | C12-        | -C13         | 1.22         | (5)<br>(3)   |
| C2B—H2B2         |                 | 0.9700      | C12-        |              | 1.17         | 8 (3)        |
| $C_{5}$ $C_{10}$ |                 | 1 402 (3)   | C9          | Н9           | 0.93         | 00           |
| C5—C6            |                 | 1 415 (3)   | N3—         | C13          | 1 13         | 3 (3)        |
| C8—C7            |                 | 1 379 (3)   | C3—         | НЗА          | 0.97         | 00           |
| C8—C9            |                 | 1 389 (3)   | C3—         | H3B          | 0.97         | 00           |
| C8—N2            |                 | 1 449 (3)   | C15-        | -C16         | 1 48         | 0 (4)        |
| 03-C14           |                 | 1 190 (3)   | C15-        | -H15A        | 0.97         | 00           |
| C7—C6            |                 | 1 382 (3)   | C15         | _H15R        | 0.97         | 00           |
| С7—Н7            |                 | 0.9300      | C16-        | -H16A        | 0.96         | 00           |
| C10—C9           |                 | 1 373 (3)   | C16-        | -H16B        | 0.96         | 00           |
| C10—H10          |                 | 0.9300      | C16–        | -H16C        | 0.96         | 00           |
| C5—N1—C4         |                 | 122.46 (16) | С6—         | C11—H11B     | 109          | 2            |
| C5—N1—C1         |                 | 125.17 (17) | C12-        | C11H11B      | 109.         | 2            |
| C4—N1—C1         |                 | 112.23 (16) | H11A        | —C11—H11В    | 107.         | 9            |
| N1—C1—C2E        | 3               | 107.2 (3)   | C14–        | O4C15        | 116.         | 71 (18)      |
| N1—C1—C2A        | A               | 99.7 (2)    | С7—         | C6—C5        | 119.         | 03 (19)      |
| C2B—C1—C2        | 2A              | 33.3 (3)    | С7—         | C6—C11       | 119.         | 84 (18)      |
| N1—C1—H1A        | A               | 111.8       | С5—         | C6—C11       | 121.         | 13 (18)      |
| C2B—C1—H1        | IA              | 79.1        | 02—         | N2—O1        | 122.         | 4 (2)        |
| С2А—С1—Н1        | 1A              | 111.8       | O2—         | N2—C8        | 118.         | 9 (2)        |
| N1-C1-H1E        | 3               | 111.8       | 01—         | N2—C8        | 118.         | 7 (2)        |
| С2В—С1—Н1        | IB              | 132.2       | C13–        | C12C14       | 109.         | 33 (18)      |
| С2А—С1—Н1        | 1B              | 111.8       | C13–        | C12C11       | 108.         | 76 (17)      |
| H1A—C1—H         | 1B              | 109.6       | C14-        | C12C11       | 110.         | 85 (17)      |
| C3—C2A—C1        | 1               | 105.5 (2)   | C13–        | C12C4        | 108.         | 75 (17)      |
|                  |                 |             |             |              |              |              |

| C3—C2A—H2A1   | 110.6        | C14—C12—C4     | 112.53 (16)  |
|---------------|--------------|----------------|--------------|
| C1—C2A—H2A1   | 110.6        | C11—C12—C4     | 106.51 (17)  |
| C3—C2A—H2A2   | 110.6        | C10—C9—C8      | 118.7 (2)    |
| C1—C2A—H2A2   | 110.6        | С10—С9—Н9      | 120.6        |
| H2A1—C2A—H2A2 | 108.8        | С8—С9—Н9       | 120.6        |
| C1—C2B—C3     | 104.8 (5)    | O3—C14—O4      | 125.2 (2)    |
| C1—C2B—H2B1   | 110.8        | O3—C14—C12     | 124.4 (2)    |
| C3—C2B—H2B1   | 110.8        | O4—C14—C12     | 110.42 (17)  |
| C1—C2B—H2B2   | 110.8        | N3—C13—C12     | 176.2 (3)    |
| C3—C2B—H2B2   | 110.8        | C2A—C3—C4      | 106.2 (2)    |
| H2B1—C2B—H2B2 | 108.9        | C2A—C3—C2B     | 33.3 (3)     |
| N1—C5—C10     | 121.69 (18)  | C4—C3—C2B      | 104.6 (3)    |
| N1—C5—C6      | 118.85 (18)  | С2А—С3—НЗА     | 110.5        |
| C10—C5—C6     | 119.45 (18)  | С4—С3—Н3А      | 110.5        |
| С7—С8—С9      | 121.76 (19)  | С2В—С3—НЗА     | 80.7         |
| C7—C8—N2      | 118.9 (2)    | C2A—C3—H3B     | 110.5        |
| C9—C8—N2      | 119.3 (2)    | C4—C3—H3B      | 110.5        |
| C8—C7—C6      | 120.1 (2)    | C2B—C3—H3B     | 136.8        |
| С8—С7—Н7      | 119.9        | НЗА—СЗ—НЗВ     | 108.7        |
| С6—С7—Н7      | 119.9        | O4—C15—C16     | 107.2 (2)    |
| C9—C10—C5     | 120.9 (2)    | O4—C15—H15A    | 110.3        |
| C9—C10—H10    | 119.5        | С16—С15—Н15А   | 110.3        |
| C5-C10-H10    | 119.5        | O4—C15—H15B    | 110.3        |
| N1—C4—C3      | 104.31 (17)  | C16—C15—H15B   | 110.3        |
| N1—C4—C12     | 109.20 (16)  | H15A—C15—H15B  | 108.5        |
| C3—C4—C12     | 119.69 (19)  | C15—C16—H16A   | 109.5        |
| N1—C4—H4      | 107.7        | C15—C16—H16B   | 109.5        |
| C3—C4—H4      | 107.7        | H16A—C16—H16B  | 109.5        |
| C12—C4—H4     | 107.7        | C15—C16—H16C   | 109.5        |
| C6—C11—C12    | 112.16 (16)  | H16A—C16—H16C  | 109.5        |
| C6—C11—H11A   | 109.2        | H16B—C16—H16C  | 109.5        |
| C12—C11—H11A  | 109.2        |                |              |
| C5—N1—C1—C2B  | 170.8 (4)    | C6—C11—C12—C13 | 167.79 (18)  |
| C4—N1—C1—C2B  | -4.9 (4)     | C6—C11—C12—C14 | -72.0 (2)    |
| C5—N1—C1—C2A  | -155.8 (2)   | C6—C11—C12—C4  | 50.7 (2)     |
| C4—N1—C1—C2A  | 28.5 (3)     | N1-C4-C12-C13  | -177.03 (18) |
| N1—C1—C2A—C3  | -34.5 (3)    | C3—C4—C12—C13  | 63.0 (3)     |
| C2B-C1-C2A-C3 | 72.1 (6)     | N1-C4-C12-C14  | 61.7 (2)     |
| N1—C1—C2B—C3  | 19.3 (6)     | C3—C4—C12—C14  | -58.3 (3)    |
| C2A—C1—C2B—C3 | -62.0 (5)    | N1-C4-C12-C11  | -60.0 (2)    |
| C4—N1—C5—C10  | 169.18 (19)  | C3—C4—C12—C11  | -179.95 (19) |
| C1-N1-C5-C10  | -6.1 (3)     | C5-C10-C9-C8   | 0.1 (3)      |
| C4—N1—C5—C6   | -12.2 (3)    | C7—C8—C9—C10   | -1.4 (3)     |
| C1—N1—C5—C6   | 172.52 (19)  | N2-C8-C9-C10   | -179.92 (18) |
| C9—C8—C7—C6   | 1.8 (3)      | C15—O4—C14—O3  | 4.6 (3)      |
| N2—C8—C7—C6   | -179.62 (19) | C15—O4—C14—C12 | -175.16 (19) |
| N1—C5—C10—C9  | 179.25 (19)  | C13—C12—C14—O3 | 130.1 (2)    |
| C6—C5—C10—C9  | 0.6 (3)      | C11—C12—C14—O3 | 10.2 (3)     |
| C5—N1—C4—C3   | 172.03 (19)  | C4—C12—C14—O3  | -108.9 (2)   |

| C1—N1—C4—C3   | -12.1 (2)    | C13-C12-C14-O4 | -50.1 (2)    |
|---------------|--------------|----------------|--------------|
| C5—N1—C4—C12  | 43.0 (3)     | C11—C12—C14—O4 | -169.98 (16) |
| C1—N1—C4—C12  | -141.17 (18) | C4—C12—C14—O4  | 70.9 (2)     |
| C8—C7—C6—C5   | -1.0 (3)     | C14—C12—C13—N3 | -151 (4)     |
| C8—C7—C6—C11  | 179.0 (2)    | C11—C12—C13—N3 | -29 (4)      |
| N1C5C7        | -178.85 (19) | C4—C12—C13—N3  | 86 (4)       |
| C10—C5—C6—C7  | -0.2 (3)     | C1—C2A—C3—C4   | 28.8 (3)     |
| N1-C5-C6-C11  | 1.1 (3)      | C1—C2A—C3—C2B  | -63.2 (5)    |
| C10-C5-C6-C11 | 179.78 (19)  | N1—C4—C3—C2A   | -11.4 (3)    |
| C12—C11—C6—C7 | 157.10 (19)  | C12—C4—C3—C2A  | 111.1 (3)    |
| C12—C11—C6—C5 | -22.9 (3)    | N1—C4—C3—C2B   | 23.2 (4)     |
| C7—C8—N2—O2   | -2.7 (3)     | C12—C4—C3—C2B  | 145.6 (4)    |
| C9—C8—N2—O2   | 175.9 (2)    | C1—C2B—C3—C2A  | 71.0 (6)     |
| C7—C8—N2—O1   | 177.1 (2)    | C1—C2B—C3—C4   | -26.4 (6)    |
| C9—C8—N2—O1   | -4.3 (3)     | C14—O4—C15—C16 | 172.0 (2)    |
|               |              |                |              |

### Hydrogen-bond geometry (Å, °)

| D—H···A                                      | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|----------------------------------------------|-------------|-------|--------------|------------|
| C11—H11A···O3 <sup>i</sup>                   | 0.97        | 2.48  | 3.432 (3)    | 167.       |
| Symmetry codes: (i) $-x$ , $-y+2$ , $-z+1$ . |             |       |              |            |







Fig. 2



